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ABSTRACT

In this paper we discuss three types of results: Firstly, we

present two Levy-Khinchin type representations of Poisson type infinitely

divisible (i.d.) laws on certain topological vector (TV) spaces; one of

these complements a known representation due to Dettweiler. Secondly,

we define and characterize r-semistable laws on locally convex TV

spaces and also obtain good representation of their characteristic func-

tions. Finally, we discuss the existence and the continuity of the semi-

group {jt : t > 01 of i.d. laws V on locally convex TV spaces. These

complement similar known results of Siebert.

* The research of this author is partially supported by the Office of
Naval Research under contract No. N0014-78-C-0468.
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I. INFINITELY DIVISIBLE LAWS

Let X and V be two real vector spaces in duality with Y

separating points of X ; and let V be a weakly Radon law on X with

Livy measure F . We recall that F is a measure on X\{e} such that

F is finite and weakly Radon outside every nbd. V of 6 ( for the

weak topology o ) and that the relation

(1) Log is(y) - f(cos y(x) - l]dF

where y c V and F(dx) - F(dx) + F(-dx) , defines the characteristic

(ch.) function us of ps , the symmetrization of U More pre-

cisely the family fusV } of the laws, defined by (1) by reducing the

integral in (1) to X\V Vc , is tight and converges to Us as the

filter {V} + {e) . We recall also that U and V are infinitely

1/n 1/n
divisible (i.d.): )1/ and u exist and are weakly Radon for

1/n

every positive integer n . The measure U1/n is obtained by re-

placing F by F/n in (1). We denote the class of these measures by

T and say that U e T is of "Poisson type" if p has no Gaussian

component.

Lema 1. Let G be a (bounded) measure and let

Gn

e(G) ( • -g  _ , g - G(X) ) is a proper factor of U ; i.e.
n-O

- e(G)v with v c T ( v being Radon for a ). Denote by 6(c)

the inverse function of c(6) - 6e-26,with 26 < 1 . If
-tc 1"hn a"--

c t (A ) < 1 , then one has, for very positive rational t

1
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(1') tG{(A - A)CI < 6 (t (AC))

in particular,

(1") tG(Ac) < 6(p/Acl2))

if A is a.c. (absolutely convex).

Proof. Denote by Gt' the restriction of tG to (A - A) and by
t

gt the total mass of tG. Since by hypothesis v exists, it follows

t t
that P - e(G') is a factor of V and hence also of 1s  This

t

implies that there exists an a such that P(A - a) > 1 - c ; which

in turn implies that p s(A - A) > 1 - 2c . Thus, we have

2c > •-2 g t 2gt ; implying gt I 6(e) , completing the proof.

Remark 1. This lemma (among its other applications) is, in fact, used

to define Fvc , the restriction of F to Vc, provided that u is

known to have finite projections uI of the form e(F1 ) (: 4= TI ( )

ITIX =~ i (x) , for I a finite subset of Y ). To see this, one

c 1
takes t - 1 and ps K < 7 e , for an appropriate weakly compact set

K , and applies Prokhorov's theorem to pi V F 1,VC ,with V open

cylinder sets; this assures the o-Radon extension of FI,vc to a

bounded measure FVc which assigns zero mass to V

Also, if U is Radon for a topology C finer (than a ) having

the dual V , then Fv'S and F - sup FV are C-Radon: Let U be a

given C-nbd. of 0 ; choose a symmetric C-nbd. U' of 0 with

1/no(, 1U' + U' C U and a positive integer no  such that (u') 1 - e

(this is possible from (1) and the observation that the family 
U/
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is C-tight); then for A = U', (W') yields

G(Uc) C G(U' + U')c <n06(l/nO(UIC)•

This proves the fact mentioned in the beginning for (X,C) (with dual

Y ) assuming the only hypothesis that p, are of Poisson type (see

1/n[5], for the existence of u ).

Theorem 1. Let X be a topological vector space (TVS) such that the

dual Y of X separates points of X and let U' be a weakly Radon

Poisson type law on X with Levy measure F Assume that for some

a.c. weakly compact set K one has

(2) F(k ) < , and I 1xil dF < , L,- 1, 2,
k

where l - IxIK * inf {t > 0 x e tK} . Then the formula

(3) Log pn(y) i { [e y(x) 1- iy(x) Ik(x) ]dF or I (eiy (x ) - 1)dF

If X - 1 , defines a Radon law pn , for each n E [0, 1]; further, the family

{Un : 0 < n < 1} is weakly tight and converges to ( U0 ), which

is a translate of U' .

Proof.* Let p(y) - pKO(Y) (the Minkowski functional of K0, the

polar of K ) and cN - Us(NKc/2) ; using Lea 1, we have

F(NKc) <. 6(e )

To begin with we assume that F is bounded outside every nK

This assures us that the law n , defined by (3), is Radon, for every

n > 0 Let cN be as above and N' > 0 be such that I CN/CN < 1;

S

* The method of proof here, as well as that of Theorem 4, is
similar to that of (6].
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then, as ps and therefore Un are factors of ps , using a well

known method [4. 91, we can choose a. c X such that {V = U 6(a)
is tight; in fact, p' (NKc) < C' Now in IxI 1< , the abso-

lute value of the integral in (3) is dominated by p9(y) f x dF

fn < IxI < 11

and since p 1. p(Y) < p(y) . In (1 < xi <N} ,clearly,

If (eiy(x) - l)dFJ <. p(y) f Ixj2 dF
1< fx[ <N " {1 < IxI < N

Thus, we have

(4) [Log i,(y)j < 26 (N) + CNP(Y)

where CN - f IxjtdF < w , as F is bounded outside K . But,
NK

clearly,

(4') Iin(y) - 11 2e; + Np(y)

Thus 1 ,(y) - 1i and IiiP(y) - (y)l are both uniformly small with

p(y) ; therefore, as '(Y)/ n(Y)) , leiy and hence y(a,,)

are uniformly small for all y e tK0  (for small t ). Thus an e t-lK

for all n . This proves {pn )  is tight.

Now we show that (3) defines a Radon law when F(K 0 ) is not

necessarily finite: The proceeding arguments, applied to a net {G,)
of finite measures with Go t Fn = F/{x: Ixi > n) , ni fixed, show

that (4) holds with the same constants CN  and 8(cN) for the law

una defined by (3) with F replaced by Ge . Similar arguments apply
to (4'). Thus u , being the limit of the tight net (una} of Radon

laws, is Radon.

--- - . , l, , ll-
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The following two corollaries are immediate from the theorem.

Zorollary 1. Let F satisfy the hypothesis (2), fF I an in-

creasing filter with F + F and let ua be the Radon law defined by

(3) with n - 0 and Fn  replaced by Fa . Then {U,} is tight and

Pa - , where v is as in the theorem.

Corollary 2. Let (X,C) be a TVS with the dual Y separating

points of X . If 4' is C-Radon and F satisfies (2) for some

C-compact set K, then the conclusions of the theorem hold in the sense

that tightness as well as the convergence are in the sense of C

The hypothesis F(Kc) < - (which always holds for a suitable

set K , by Lemma 1) does not necessarily imply that fjxjdF < , for
K

e T . We give another theorem which assumes the hypothesis:

(5) (X,C) is locally convex (l.c.) and complete.

This hypothesis has the drawback in that it is not applicable

when C - a . We begin with a lemma.

Lemma 2. Let (X,C) be a complete l.c. TVS.

(i) If {NaI is a convergent (following a certain filter) tight

family, then the ch. functions ,(y) of U. converge uniformly on the

polar U0  of every C-nbd. U of 0 .

(ii) If the family {a * 8(a,)} of the translates of Ua is

tight and if the family { a} of ch. functions converge (following

a certain filter) to a function * uniformly on the polar of every

nbd. belonging to a C-nbd. base of 0 , then there exists a unique

C-Radon law ;j such that an 4u A M

-- ~ -- ---- -.- ~ -.- , - ~I
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Proofs of these are given in Eli. Using a contrapositive

argument, a simpler proof of (i) follows easily by observing that U0

is compact for a , that the topology C0  of uniform convergence on

C-compact subsets of X coincides with a on U0  and that the condi-

tion of C-tightness of fu,} implies the equicontinuity of { I on

U0 for a- CO .

For the proof of (ii) see ((1] p. 293): One shows, as in the

proof of Theorem 2 below, that feiy(an )l forms a Cauchy filter uni-

formly on suitable sets K0 which assures, as K0  absorbs every U0

that {a.1 is C-Cauchy; thus the necessity of the completeness of

(X,C)

In the following theorem the method of proof is that of [1]; it

provides another expression obtained in Theorem 2.5 of [1] which gives

a Livy-Khintchin formula.

Theorem 2. Let ' be a Poisson type C-Radon law with Livy

measure F on (X,C) ( (X,C) l.c. and complete) and let {F } be an

increasing net of Radon laws on X\(e} with F. + F . Then for every

bounded Borel set B with F(Bc) < , the formula

(5) Log i(y) - f[eiy(x) - 1 - iy(x)]I(x)dFQ

B

defines a Radon law a ; further if PF in (5) is replaced by F

then (5) defines a Radon law u which is a translate of U' and the

net {fu} converges (in the sense of C ) to u•

m |m i~inel i liim | III " -
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Proof. To begin with we argue by assuming that (5) defines the

Radon laws. The laws Pas form a tight family (see Lemma 2 of (4]),

which converges to us Moreover us is continuous in (Y,CO) , which

assures that I s(y)j > 1/2 on the polar of a suitable compact set K

and hence also on U0 , for every C-nbd. U of 8 and large enoughn

n , depending on U . Then, form (i) of Lemma 2, we have

(6) f[l -cos y(x)]d(F - Fa ) +0,
B

uniformly in each I UO hence alson

(7) f y 2 (x) d(F - Fa) - 0
B

uniformly on -U as long as 2B C n'U and n' > n , because

Itl < 1/2 implies 1 - cos t > t2/3 We thus have

(7') fieiy(x) - 1 - iy(x)]d(F - Fa ) + 0
B

uniformly on - U0  Thus, since the laws defined by

Log I,(y) - f[eiy(x) - 1 - iy(x)]dF. are factors of u (see below),
B

Lemma 2 (11) applies and the result follows (we do not affirm that

{Pal is tight).

To see that (5) indeed defines Radon laws; let, for fixed F. ,

{G I be an t net of bounded measures with GO + FM . The pre-

ceeding estimates and arguments a fortiori hold, proving that pa 9

being the limit of the Radon laws ua, which are defined by (5) and

Goo , is Radon.

Note that this applies to F' - F - F; therefore . is indeed

a factor of u (the cofactor u is defined by (5) and F; ).
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II. SEMISTABLE LAWS ON TVS

Lemma 3. Let (XC) be a TVS, whose dual Y separates points of X

If W is weakley r-regular law on X , then there exists an

element a in X such that P-a w P6(-a) is supported by the space

E {x: y(x) - 0 , for every y for which py is degeneratel .

Proof. Let S - {x: y(x) - ay , if y - ay a.s. P} ; then S is

weakley closed and p(S) = 1 . Now it is clear that for any a in

S , we have E - S - a with _a (E) - 1 .

The following theorem defines and characterizes r-semistable

laws:

Theorem 3. Let (X,C) be l.c. TVS. Let v , v be two C-Radon

laws (with P convexly tight*) and let 0 < r < 1 . Then (8) and (9)

below are equivalent:

There exist sequences (a,} , an > 0 , (bn} C X and a

(8) strictly increasing seuqence {kn} of positive integers such
that **(.kn ) 6(bn , k n+1 1k

..n' k n  r

ta is (i.d.) and Ur - (a - v)6(b), for some b e E and a > 0

(9)
where E is as in Lemma 3.

(If u satisfies (8), then U is called r-semistable.)

u . is tight following compact convex sets. Note any C- tight
law is convexly tight if (X,C) is quasi-complete; same remark applies
for a if X is complete for the Mackay topology.

** If v is the law of a random vector X and a # 0 , then
a-v denotes the law of aX .
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Proof. If y E E' (the dual of E ) , y 6 e , then Uy 1

and hence vy is non-degenerate, and one has

(an'vYkn)6(y(bn)) -* y ,

as n - . This implies that u is i.d. and ur exists (see [51,

p. 320). Let 0 and * denote, respectively, the ch. functions of

v and i Then (8) implies

e ity(bn)kn(anty) - i(ty) ,

and ku

(10) [eity(bn+l) 0kn+l(an+lty)] n+l - 3r (ty)

(uniformly on bounded subsets of reals), as n - - But left side of

(10) can be written as

k.

eity(bn)Okn(a anty)eity(ii bn+l - bn)

hence, using the types of convergence theorem on R , the reals, we have

an--l > 0 y( kn  b - bn ) -)b (with a independent of y ), andan +1  n+1

(10') Ur _ (a-u vA (b

y y) ~y)

But (10') and Corollary 1 of Lemma 2 of [4] imply that there exists a

b c E such that b - y(b) and that ur - (a.ij)8(b) .

Conversely, let kn  be the integral part of r- n  (r < 1) , then

rAkn * 1 . Then (9) and continuity of {us} (see Section III) gives

it 'rn kn

I i . .. .. . . -- - -- . . . .

r

_____ ___ _ __ ML
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where bn C E • Hence (9) holds with -- ' 1

Le-mma 4. Let P be as in Theorem 3 with (X,C) l.c. TVS and let

H = It > 0 : U.t = (at.)6(bt) , for some at > 0 , bt e X) (H # * ,

for P satisfying (9)). Then H is a closed multiplicative subgroup

of R+ s{r : r > 01 . Thus either H = R+ (then u is stable) or

H is generated by r0  the largest element in H less than 1 (then

is ro-semistable). In particular one has urn = (an. )6(bn)

a(r)a(r') - a(rr') , let ar = rx •

Proof. It is clear than t-1 e H , whenever t E H . On the other hand

if t , t' e H , then it(y) - *paty)eiy(bt) , and

'p (Y) t( t' *(at,aty)ei(bt% + t'bt) showing tt' e H

Finally, let {tn} C H with tn - t ; then ptn - (atn.U)6(bn ) for

each n . Now by continuity of [us) , we have lim (atn.i) (bn)
n

lim tn t. This and the types of convergence theorem (after pro-
n

t
jecting to R ) shows that p y (a-l)S(by) for every y c E'

with a independent of y , as in Theorem 3. Hence from ((4], p. 304),

we have that t e H'.

Lema 5. Let u and (X,C) be as above. If A 0 1 , then U ca be

centered: for some m e X , v--im satisfies v t. , for all

t e H .

Proof. Let Xr and X be vectors with laws r (r #1) and ,

respectively, then one has

br law

m a (11') YET - rm aar (X -a)•
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Now if H is generated by r0  define m by r0 , then vt . tA.v

holds for all t C H , by (11) and iteration. For the case H - R+

P is stable, and m is independent of t because my 's are (see

Lemma 3, p. 178 and Note 5 of [6]).

Lemma 6. Under the hypothesis of Theorem 3, (8) for r - 1 is equiva-

A
lent to (9) for all r (with ar = r , A > 1/2 (from Theorem 4));

i.e. u is stable of exponent a = 1/A

Proof. Taking r - 1/n , we obtain from (9), p1./n . (an.-)6(bn) which

yields U _ (ann)6(nbn) . Showing u satisfies (8) with k. n .

Conversely, assume p satisfies (8) with r - 1 . Let now r c (0,1)

one can choose a sequence Xn = kn/kn , with n' > n , such that An . r

Now, for y c E' , it follows, from (8), that

0 (aty)e *(ty)

and
[kn'itY eiY(tbn' kn/n.,~y

uniformly on bounded subsets of R . Then repeating the arguments used

in the proof of Theorem 3 we see that (9) holds.

Theorem 4. Let V be a C-Radon convexly tight r-seuistable law on

(XC) (with (X,C) I.c.) . Assume that a - -. < 2 (for a = 2 and
t2

u centered, *r(yt) - *(/7 ty) gives, (1(t) = y(l) and so U is

Gaussian), then we have:

() The Levy measure F of V satisfies

(12) r nA.F rn

______________________ L .
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for all n - ±1, ±2, .... For every U-positive a.c. bounded closed

set B , F is bounded outside every set nB (n > 0) and is supported

by the space EB = UnB . Further, Ixly  is F-integrable on

{lxi <I n} if and only if y > a and on {fxf > n1 if and only if

y < a, for all n > 0 , where lxi - PB(x) - inf {t > 0 : x c tB}

(ii) The ch. function of the centered law vc of p for

a * 1 , has the form

(13) Log c(y) - f(eiy (x) - 1)dF

if a < 1 , and

(13') Log ,(y) - f[eiy(x) - 1 - iy(x)]dF

if 1 < a < 2 . For every B (compact for a oi C ), (13) and (13')

signify that if un denotes the law corresponding to the ch. function

obtained by truncating the integrals to { lx > n}, then {p n is

tight and converge to uc as n * 0 . For a - 1 , one has the same

result for a translate 14' of v ( U' in general is not centered if

F is not symmetric) with

(13") Log .'(y) - f[e±y(x) 1 - iy(x)I(x)]dF
B

for an appropriately chosen compact set B .

(iii) If (XC) is,in addition, complete and metrizable, these

properties of the families (U} and {u.} hold for all u-positive

a.c. bounded closed sets B . If (XC) is only l.c. complete (and not

metrizable), the convergence property of the measures still holds, but we

no longer affirm that the family is tight.
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Proof of (i). Since U s , and Log -s(y) f [cos y(x) -l]dF

we have

f[cos y(x) -irdF - f[cos r Ay(x) - IldF - f[cos y(x) - lld(r AF)

thus (12) holds for F . But in finite dimension the same thing holds

modulo the translation with f(eiy(x) - 1)dF ; thus Fy satisfies (12);

therefore so does F .

Fix B , thensince 1.t = t 'us, for all t - rn , and u(B) > 0sP

we have

tB B Bus( us -s( ) + 1

as n . = , by the 0-1 law (see [10]) and by the fact that

Us(2Bc) < (u(Bc))2 . Lemma 1, therefore assures us that F is bounded

outside each set nB . Thus, by (12), rnF(B c) - F(BC/r nA) 4 0 as

n , showing EB supports F .

Now let n - r Ano (by the choice of n0 , we can make

n arbitrarily small or large), then this same formula (12) gives:

(a) 2 dFy) M > r2 X(1)Fy (n+l) <1 tj ! r n

mOtdFY) 0 {

= (1 - r)Fy{lt I > 1) i r(n+l)(
2 X -1)

0

(showing a < 2),

(b) f IxI~dP r X(rX~ll x rf}

(1x I_ rAno} nO

I F(Bo) i r n(yX- l ) <.
r

no

if y > a; and
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(c) xIxjdF < r-YA(n+l)Fjr An < Ixi < r- (n+l)}
11Ix > rn , -no

- (1 -r)F(B c) r< r*
rYX -no

if y < a

The same method proves that in (b) and in (c) y cannot be

< . , respectively, > ax

Proof of (ii). Using (i), we apply Theorem 1 by taking an appropriate

compact set K - B and L - 1 , if a < 1 , and X - 2 if a > 1

Clearly in the first case one obtains (13) and the proof of the asser-

tion (ii), the same in the second case after translation by - fcxdF
B

For the case a - 1 and F non-symmetric one uses (c) to obtain (13")

(as in the case of stable law of exponent 1 in R ).

Proof of (Iii). Apply Theorem 2 with Fn equal to the restriction of

F to {x: IxI > ni and completing by the translation -f xdF , if
B

< 1 , and by f xdF , if a _ 1 . That the families {un } and
BC

{u } are tight, under the hypothesis that X is complete metric space

follows from a result of Topsie ([3], p. 43). One show, in fact, that

{Un } is relatively compact (in the set of C-Radon laws), for 0 < n < 1

ILn
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III. THE SE4IGROUP u on R+

Let u be i.d. and Radon on (X,C) with (X,C) l.c., then pt

is defined for all t (rational) > 0 . Siebert has shown ([21, p. 243)
t

that ui can be defined for all t > 0 ; in fact, he proved the following:

Theorem 5. (Siebert) Let P be i.d. and C-Radon and convexly tight

on (X,C) with (X,C) l.c. Then the semigroup { t : t > 0} is

uniquely defined and continuous, and { t : t e (0,T]} is tight, for

every T > 0 .

Remark 2. Theorem 4 of Siebert ([21, p. 243] gives probably the simplest

method to obtain the above result which is nearly the most general

result of this type. In the following we give another presentation of

this problem. Even though our hypotheses (both on u and X ) are

weaker, we are able to affirm the continuity of ({Vr only over the set

of rationals. The definition and continuity of ut, for all real

t > 0 , is also proved but this is done under more restrictive condi-

tions. We being with a lama:

Lemma 7. Let X be a Banach space and u an i.d. Radon law on X

Then a (unique) continuous semigroup (ut : t > 01 always exists;

further, ( t : t e (O,T]} is tight, for every T > 0

Proof. It has been proved more than twelve years ago by Parathasarathy*

for the space C[O,1] . This applies for the case considered here,
u

since Aj , n - 1, 2, ... , are all supported by a separable subspace

of X which can be isometrically embedded in X - C0,11 . (Note that

* Preprint; the proof is similar to that of Siebert:
(U t8(at) : t 2, 0) being tight, one shows that so is Me(at)}

S 01101
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tX supports P , because every y c Y X' which is zero a.s. j is

t talso zero a.s. ut , for fixed t , and U is T-regular in X and

hence in X ). We provide a direct simple proof of this lemma; let

u' be the law with

Log 4,t(y) - f[eiY(x) - 1 - iy(x)]tdF
B

where B - {x : OxA < 1} , and t rational in [0,1] The inequality

t sup fy2dF < 3t sup f[1 - cos y(x)]dF < Const. t

1y1< B - y1<6 B

(note Iis(y)I >n >0 in {y : lyl < 61 , for some a > 0 ) gives

ILog 1, t(y) < t sup fy2(x)dF < Const. t . This and Lemma 2 assure the
-y1 <l B

definition of Ut by continuity, for all t > 0 . Thus the continuity

of the semigroup on R+ is proved; that {ut : t c (0,T]} is tight is

proved as in (iii) of Theorem 4.

Theorem 6. Let (X,C) be l.c. and let U be a weakley T-regular i.d.

law on the C-Borel a-algebra of X . Then the semigroup

{,r : r > 0 , r rational) is continuous. If, in addition, X is

metrizable and complete then a unique continuous extension of the above

semigroup to R+ exists.

Proof. Let X0 - {x : y(x) - 0 if y : 0 a.s. U) ; then since

1/n I n - 1, 2, ... , are weakley T-regular and y 5 0 &.c. u

implies y : 0 a.. P1 /n, we have Ul/n 0 - 1 , for all

n - 1, 2, ... ; we thus can replace X by X0 9 for the proof. For a

closed s.c. C-nbd. U of X0 , denote by XU the quotient space
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X0 /pu {f} , where PU is the Minkowski functional of U , then

is a separable normed space under the norm I x Pu(x) , where

is the image of x under the natural projection (see [71, p. 135-

136). Now in X0 , U ix : p (X) <1) and

S(~ru)- u:r Iu <_ 11- p{ £ X • I < l , where and

~r denote, respectively, the images under the obvious maps of U in

X and ,the completion of XU. Since {lj, I .1 as

r - 0 (r rational), for all q > 0 (from Lemma 7), Pr(,U) -o-1 , for

all nU , proving the continuity of Ur for all r (i.e. as rn - r

,Irn-r l  6(6) ), finishing the proof of the first part. The last

part under additional conditions on X now follows easily: Let p be

the law of XXn with Xn'S independent X-valued r.v.'swhere law of
rn+l-rn t

Xn = p and rn + t ; then u is uniquely defined. It is

continuous in all t ,since t(U) > lim pup 4 rn(U) assures that
trn t

U * 6(e) , as t - 0

Corollary 3. Let (XC) be a separable metric l.c. space and p an

i.d. law on C-Borel o-algebra of X . Then the semigroup

,r : r (rational) > 0} is continuous in the sense of C and also in

every topology of a separable harmed space E which is continuously

embedded in X and which supports i . Further, a unique continuous

extension in R+ of the semigroup exists in the completion E of the

space E .

Proof. Let E 4 X be such a space (for the existence see [8]). From

Theorem 1 of [8], one can suppose that E is dense in X and that u
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is defined on the Borel a-algebra of E (which is the trace of the

Borel a-algebra of X ), it follows P is i.d. on E Hence, as in

Theorem 6, this proves that {ur} is continuous on E The last

part is immediate from the Theorem 6.
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